전자부품소재 분야 사업화 유망기술

자기변형원리를 이용한 초음파 방식의 위치 측정 장치 및 그의 측정 방법

Patent Information

- 발명자 박영우
- Patent Number 10-2021-0003395 (2021.01.11)

Keyword

- 자기변형 와이어
- 초음파 도파로
- 비틀림 파 검출
- 헬름홀츠 구조 센싱코일

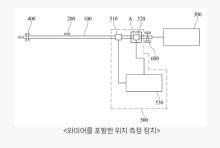
Applications

- 비파괴 검사 장비
- 결함 내부 탐지기
- 초음파 센서

Patentee & **Contact Point**

충남대학교 기술가치센터 042-821-7174 cnutlo@cnu.ac.kr

Technology Overview


자기장 변화 및 와이어 비틀림 변위를 측정할 수 있는 자기변형 원리를 이용한 위치 측정 장치

- 긴 거리 측정이 가능하고 강건성이 우수한 와이어를 초음파 도파로로 사용함으로써 비틀림 파에 의한 자기장 변화를 보다 우수하게 측정 가능
- 직선뿐만 아니라 곡선 형체에서도 초음파 측정이 가능
- 나선형 자기장을 형성해 비틀림 파에 의한 자기장 변화 및 비틀림 변위를 동시 측정
- 위치 측정 장치 및 알고리즘을 통한 정밀 위치 계산
- 솔레노이드 및 헬름홀츠 코일을 사용한 자기장 변화 감지

Technology Highlights

자기변형 원리를 적용한 고체 매질 와이어

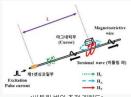
- · 고체 매질의 와이어 사용으로 강건성을 확보함과 동시에, 기존 고체 매질의 한계를 극복하고 다양한 형체에 고정 및 설치 가능
- · 강자성체인 자기변형 재료에 의해 형성
- 한 축에 자기장이 인가될 경우 자구가 인가된 자기장 방향으로 정렬되며 길이 방향으로 변화하는 자기변형 효과를 포함

헬름홀츠 구조의 코일

- 1. 제1센싱 코일부
- · 마그네틱부 위치를 측정하기 위한 제1센싱 코일부는 솔레노이드 구조 또는 1축 헬름홀츠 구조를 포함
- · 1축 헬름홀츠 구조는 두 개의 원형 코일이 동일 축 선상에 평행으로 배치되고, 코일 사이 거리는 원형 코일의 반경과 동일함
- ·제1센싱 코일부의 위치에 따라 측정불감대 영역이 형성

2. 제2센싱 코일부

· 측정불감대영역을 줄이기 위해 수신 유닛은 2축 또는 3축 구조의 헬름홀츠 구조를 포함하는 제2센싱 코일부를 포함


· 비틀림 파에 의한 자기장을 측정

·제1센싱 코일부를 통해 마그네틱부의 위치 측정뿐 아니라, 제2센싱 코일부를 통해 와이어의 변위 및 제3자기장 측정이 가능

비틀림 파에 의한 자기장 변화 및 변위 측정

- 1. 와이어에 대한 축 방향으로 제1자기장 제공 · 와이어와 일정 간격을 유지하는 마그네틱부를 통해 제1자기장 제공
- 2. 와이어에 대한 원주 방향으로 제2자기장 제공
- · 와이어 일단에 배치되는 송신부를 통해 제2자기장 제공
- ·제2자기장은 와이어를 따라 이동
- · 송신부가 인가하는 힘의 크기에 따라 제2자기장 크기 변동
- 3. 나선형 제3자기장 형성 및 비틀림 변위 측정
- ·제1자기장과 제2자기장이 만나는 지점에서 형성
- · 수신유닛을 통해 자기장 변화 검출 및 비틀림 변위 측정

<비틀림 변위 측정 개략도>

위치 측정 알고리즘

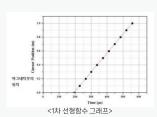
1. 분석영역 추출

- ·제1센싱 코일부의 출력신호에서 윈도우 함수를 이용하여 분석영역을 추출
- 2. 펄스 전류 인가
- · 송신부를 통해 일정 주기의 펄스 전류를 인가

3. 전압최대값 추정

·마그네틱부의 위치에 따라, 제3자기장에 의한 변화에 발생하는 전압최대값을 추정

4. 전압값 변환


·마그네틱부의 위치에 따라, 전압최대값의 발생 평균시간 산출

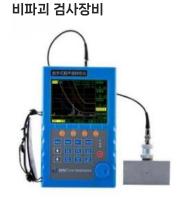
5. 평균시간 산출

·마그네틱부의 위치에 따라, 전압최대값의 발생 평균시간 산출

6. 1차 선형함수 도출

·제1센싱 코일부를 통해 제2자기장에 의한 변화가 검출된 제1시간과 평균시간 사이의 차이를 이용해, 1차 선형함수 도출 및 마그네틱부 위치계산

Technology Readiness Level(TRL)



초음파 센서

TRL9 상용품 출시

Technology Applications

결함 내부 탐지기

Market Trends

기술의 주요 적용 시장: 비파괴 검사 장비 시장 비파괴 검사 장비 시장규모

• 글로벌 비파괴 검사 시장은 2023년 107억 달러로 평가되었으며, 2024년부터 연평균성장률(CAGR) 10.5%로 2032년 258억 달러에 달할 전망

- 도시지역의 확장과 노후회된 인프라 유지에 대한 강조 및 규제가 성장을 주도할 것으로 예상
- 비파괴 검사 기술은 제조, 항공우주, 자동차, 석유 및 가스, 건설, 발전, 인프라 등 다양한 산업에서 사용되며, 방법에 따라 육안검사, 표면검사, 체적검사 등으로 분류됨
- 체적검사 부문은 2023년 비파괴 검사 시장의 50% 이상을 차지했으며, 다양한 산업 분야에서 품질 보증에 대한 강조가 높아짐에 따라 체적 검사 방법에 대한 수요가 크게 증가
- 아시아/태평양 지역의 시장이 2023년 비파괴 검사 시장의 점유율의 약 30%를 차지하며 가장 높은 연평균성장률로 성장할 것으로 예상
- 중국, 인도, 일본과 같은 국가에서는 건설, 제조 및 에너지 부문에서 상당한 성장세를 보이고 있으며, 신뢰 가능한 비파괴 검사 수요가 증가

